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Learning Saliency by MRF and
Differential Threshold
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Abstract—Saliency detection has been an attractive topic in
recent years. The reliable detection of saliency can help a lot of
useful processing without prior knowledge about the scene, such
as content-aware image compression, segmentation, etc. Although
many efforts have been spent in this subject, the feature expres-
sion and model construction are far from perfect. The obtained
saliency maps are therefore not satisfying enough. In order to
overcome these challenges, this paper presents a new psychologic
visual feature based on differential threshold and applies it in a
supervised Markov-random-field framework. Experiments on two
public data sets and an image retargeting application demonstrate
the effectiveness, robustness, and practicability of the proposed
method.

Index Terms—Computer vision, differential threshold, machine
learning, Markov random field (MRF), saliency detection, visual
attention.

I. INTRODUCTION

THE HUMAN visual system is remarkably effective at
finding particular objects from a scene. For instance,

when looking at images in the first row of Fig. 1, people are
usually attracted by some specific objects within them (i.e.,
strawberries, a leaf, a flag, a person, and a flower, respectively).
This ability of the human visual system to identify the salient
regions in the visual field can enable one to “withdraw from
some things in order to deal effectively with others” [1], [2],
i.e., allocate the limited perceptual processing resources in an
efficient way. It is believed that visual processing involves two
stages: a preattentive stage that processes all the information
available in parallel and, then, an attentive stage, in which the
partial information inside of the attentional spotlight is glued
together in serial for further processing [3]–[5]. In this paper,
the preattentive functionality of the human visual system is
imitated by a computer vision technique—saliency detection.
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Saliency detection aims at providing the computational iden-
tification of scene elements that are notable to human observers.
The detected result is presented as a grayscale image. The
lighter the pixel is, the more salient it might be. Typical ex-
amples of saliency detection results are demonstrated in Fig. 1.
Implementing the functionality of human visual attention by
means of saliency detection is considered to be an important
component in computer vision because of a wide range of appli-
cations, such as adaptive content delivery [6], video summariza-
tion [7], image quality assessment [8], [9], content-aware image
compression and scaling [10]–[12], image segmentation [13],
[14], object detection [2], and object recognition [15]–[17].
However, computer vision methods are still far from satisfying
compared with biological systems. Therefore, researchers have
never stopped making efforts to provide a more effective and
efficient method for automatic saliency detection.

A. Related Work

Classical saliency detection methods choose to employ a
“low-level” approach to calculate contrasts of image regions
with respect to their surroundings, by selecting one or more
low-level features such as color, intensity, and orientation [18].
The produced saliency results are topographically arranged
maps, which integrate the normalized information from one
or more feature maps to represent the visual saliency of a
specific scene. According to the techniques that they used,
these methods can broadly be categorized into three groups:
biologically inspired, fully computational, and a combination
of them.

Biologically inspired methods are based on the imitation of
the selective mechanism of the human visual system. Itti et al.
[19] introduce a groundbreaking saliency model, which is in-
spired by the biologically plausible architecture of the human
visual system proposed by Koch and Ullman [21]. They first
extract multiscale features from three complementary channels
using a difference of Gaussian (DoG) approach. Then, the
across-scale combination and normalization are employed to
fuse the obtained features to an integrated saliency map. Based
on this work, Walther et al. [22] propose to recognize salient ob-
jects in images by combining the saliency detection method of
[19] with a hierarchical recognition model, while Frintrop et al.
[23] capture saliency by computing center-surround differences
through square filters and employ integral images to speed up
the computation process. Recently, Garcia-Diaz et al. [24], [25]
propose to take into account the perception role of nonclassical
receptive fields. They start from the multiscale decomposition
on the features of color and local orientation and use the
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Fig. 1. Saliency detection. From top to bottom, each row respectively represents the original images, the ground truths, and the saliency maps calculated by IT
[19], HC [20], and the proposed method.

statistical distance between each feature and the center of the
distribution to produce the saliency map.

Different from biologically inspired methods, the fully com-
putational methods calculate saliency maps directly by contrast
analysis [18]. For example, Achanta et al. [26] evaluate saliency
as the Euclidean distance between the average feature vectors
of the inner subregion of a sliding window and its neighborhood
region. Later, in order to preserve the boundaries of salient
objects in the saliency map, Achanta et al. [18] present a
frequency-tuned algorithm, which can retain more frequency
content from the examined image than previous techniques.
Gao et al. [27]–[29] model saliency detection as a classification
problem. They measure the saliency value of a location as the
Kullback–Leibler divergence between the histogram of a series
of DoG and Gabor filter responses at the point and its surround-
ing region. Seo and Milanfar [30] propose to use local steering
kernels (LSKs) as features, which measure saliency in terms of
the amount of gradient contrast between the examined location
and its surrounding region. Differently, Hou and Zhang [31]
present a spectral residual method independent of low-level
image features and prior knowledge. They start from a thorough
statistics and experimental analysis of the log Fourier spectrum
of natural images. Then, they propose to detect saliency by
calculating the contrast between the original and the locally
averaged log Fourier spectrum of the examined image.

More recently, Rahtu et al. [32] propose a saliency measure
based on a Bayesian framework, which calculates the local
contrast of a set of low-level features in a sliding window.
Goferman et al. [33] propose a context-aware saliency model,
which aims at extracting an image subregion representing the
scene and is based on the contrast between each image patch
and the corresponding k most similar patches in the image. Liu
et al. [34], [35] formulate the problem of saliency detection as
an image segmentation task. In their method, novel features
such as center-surround histogram, multiscale contrast, and

color spatial distribution are employed to extract the promi-
nent regions through conditional random field (CRF) learning.
Cheng et al. [20] propose a regional saliency extraction method
simultaneously evaluating the global contrast and spatial coher-
ence. Wang et al. [36] define saliency as an anomaly relative to a
given context and detect salient regions in the image associated
with a large dictionary of images through k-nearest-neighbor
retrieval.

The third category of methods is partly inspired by biological
models and partly dependent on the techniques of fully compu-
tational methods. For instance, Harel et al. [37] design a graph-
based method, which first forms activation maps by using some
certain features (e.g., by default, color, intensity, and orientation
maps are computed) and then combines them in a manner
that highlights conspicuity. Bruce and Tsotsos [38] describe a
biologically plausible model of saliency detection based on the
maximum information sampled from a scene and calculate the
probability density function based on a Gaussian kernel density
estimate in a neural circuit. Zhang et al. [39] provide a Bayesian
framework for the saliency task. They consider saliency as the
probability of a target to be outstanding based on the analysis
of Shannon’s self-information and mutual information. Other
than these, Judd et al. [40] train a saliency detection model by
support vector machine (SVM), which utilizes multilevel image
features to tackle the eye-tracking data.

B. Limitations of Existing Methods

Although various methods for saliency detection have been
presented in the past few years and a laudable performance
for human attentional spotlight prediction has been achieved in
some circumstances, there are still several limitations for these
methods.

The first limitation is the integration model. Although there
are large number of cues, such as color, texture, shape, depth,
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Fig. 2. Summary of the proposed method. The salient object detection problem is modeled by an MRF, where a group of biologically inspired salient features is
incorporated in the detection procedure through MRF learning.

shadow, and motion, which have been considered as influen-
tial factors on visual attention in existing works, most of the
mainstream methods [18], [20], [30], [32], [39], [41] integrate
them only based on direct contrast calculation, which is not able
to include priors. However, the ability to incorporate the prior
information is important in many computer vision tasks [42].

Recently, learning-based methods have become very popular
and seem to be generating promising results. However, there
are still remaining problems. For example, Judd et al. [40]
employ an SVM classifier for saliency detection. The train-
ing set employed in their work is composed of images with
ground-truth fixation points instead of regions. Sometimes, a
few detected fixation points are adequate for further applica-
tions. However, in most cases, the desired exports are salient
regions.

The second limitation is the feature description. Many
descriptions of the saliency features [30], [32], [36], [43], [44]
based on the aforementioned cues are only applicable to scene-
specific database or limited by the strict conditions of use. For
example, Seo and Milanfar [30] propose to use LSK as the
saliency feature descriptor based on the covariance matrices
within the local windows. It is obvious that this definition
will highlight regions with higher local complexity. However,
saliency cannot always be equated with local complexity. For
example, Fig. 1 shows that the much less complex regions
containing the flag or the flower appear to be significantly more
salient. Wang et al. [36] describe saliency feature based on
searching through the enormous online image database. Their
method therefore greatly limits its promotion potential by the
harsh conditions in practice.

In fact, there are many proverbial principles of the human
vision system, which can play a significant role in breaking
through the bottleneck of constructing the more effective and
compact feature descriptions. Nevertheless, there is no sub-
stantial progress in regard to ingeniously introducing these
principles into computer vision.

C. Overview of the Proposed Method

The presented method, named differential threshold and
Markov random field (MRF)-based visual saliency (DTMBVS),
formulates salient object detection as a maximum a posteriori
probability (MAP) estimation problem, which can be solved by
finding the optimal binary labels that discriminate the salient re-
gions from the background of the scene through MRF learning.
Fig. 2 shows the flowchart. The main contribution of this paper
is a tractable method suitable for saliency detection. This is
motivated by the need for overcoming the limitations of existing
methods and takes advantage of two components.

First, the saliency detection problem is modeled by an MRF.
MRF and its variants (such as CRF [45], [46] and DRF [47])
have achieved many successes in computer vision. The primary
advantages of MRF are the regularization, which has the ability
to form fields with locally coherent labels, and the strong
robustness to noise. In this paper, two biologically inspired
features are incorporated in the detection procedure through
MRF learning.

The closest to DTMBVS is the method proposed by
Liu et al. [35] which extracts a prominent region through
CRF learning. The proposed method differs from the one in
[35] mainly in two aspects. First, the proposed method models
the posterior probability as the product of two likelihoods
[see (1)], each of which is then individually formulated as an
MRF energy representation, while Liu’s method models the
posterior probability directly as an MRF, which actually is
a linear combination of features. The proposed model takes
advantage of the simplicity to be understood and implemented
in practice. Second, the employed features are much different.
Liu’s method utilizes the multiscale contrast, center-surround
histogram, and color spatial distribution, while the proposed
method mainly uses a psychologically inspired color feature
(see Section II-B).

Second, a new differential threshold-based visual feature is
introduced for feature extraction (see Fig. 3). The differential
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Fig. 3. Examples of differential threshold-based visual feature maps.

threshold refers to the minimal differences that can be discrim-
inated by the human visual system between two homogeneous
physical stimuli, which can be quantified by the concept of
just noticeable difference (JND) [48]. Ernest Heinrich Weber,
an experimental psychologist, discovered that the JND between
two physical stimuli is not an absolute amount but a relative
one associated with the intensity of the preceding stimulus [48].
Inspired by this principle, the proposed visual feature employs
one JND as a unit to compartmentalize each individual color
channel. Then, the color statistics of the obtained JNDs are
utilized to define contrast for each pixel.

The rest of this paper is organized as follows. Section II in-
troduces the proposed framework and the differential threshold-
based visual feature for saliency detection. Section III presents
the extensive experiments conducted to prove the effectiveness
of the proposed method. Section IV demonstrates a content-
aware image retargeting application, and the conclusion follows
in Section V.

II. MODEL DESCRIPTION

In this section, saliency detection is modeled by an MRF.
At the same time, two biologically inspired salient features are
incorporated in the detection procedure through MRF learning.

A. MRF Structured Field of Saliency Detection

This section specifies a general saliency detection method,
which aims to estimate the probability (i.e., between 0 and 1)
of each pixel to be salient in a visual scene according to the
image features.

In our method, the input image X with pixels {xi} is
described by two kinds of features, F = {fi} and S = {si},
where fi and si are the proposed differential threshold-based
visual feature and the relative position of xi, respectively. This
method will provide X a binary mask L to classify each pixel

xi with a label li ∈ {1, 0}, which indicates whether this pixel
belongs to the salient region.

The prior information is represented by the notation G, which
takes into account the statistical properties of the selected
features, as well as the supervisory labels. Concretely, G is
introduced to represent the distributions of the features in the
salient region (denoted as GF,1 and GS,1) and background (de-
noted as GF,0 and GS,0) and the distribution of the proportion
R of the salient pixels in the entire image (denoted as GR). Each
distribution is described by a Gaussian mixture model (GMM).

Since G can be learned from the training set, the saliency
detection problem can thus be translated to a MAP problem

p(L|G, X) ∝ p(X,L|G) = p(X|L,G) · p(L|G). (1)

Insofar, the pixel coordinate and the differential threshold-
based visual feature are assumed to independently affect the
saliency detection. Therefore, the probability p(X|L,G) is
made of two distinct parts

p(X|L,G) = p(F, S|L,G) = p(F |L,G) · p(S|L,G). (2)

Then, consider the probability p(L|G) of the mask L given
all the related parameters G. We assume that the mask will
form a label field with interactions between neighboring pixels,
and the labels in the mask obey the distribution described by
GR. Therefore, this probability is assumed to combine two
independent models

p(L|G) = p(RL|GR) ·RL · pcorr(L). (3)

The first part p(RL|GR) ·RL constrains the mask L with the
GMM description of R. RL is the proportion of pixels labeled
as 1 by L in the image. The second part pcorr(L) encodes
neighbor correlations imposed by the MRF, which regularizes
fields with locally coherent labels. This field is defined on a grid
(8-connectivity).
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Then, the conditional probability p(L|G, X) can be rewritten
using an energy function E, p(L|G, X) ∝ exp(−E), which
makes the solving of the MRF easier

E = U1 + U2 +Σi,j∈NVi,j (4)

where N represents couples of graph neighbors in the pixel grid.
The sum over Vi,j represents the interaction potential, which is
defined as

Vi,j =

{
−β, lj = li, xj ∈ Ni

+β, lj �= li, xj ∈ Ni
(5)

where Ni denotes the neighbors of xi and the constant β is
experimentally chosen to be 0.5.
U1 is the unary potential of the observations, while U2 is the

likelihood energy of the label distribution. These two terms are
determined by

U1 = − log [p(F |L,G) · p(S|L,G)] (6)

U2 = − log [p(RL|GR) ·RL] . (7)

After obtaining the component items of E, the MAP problem
can be transformed to finding an optimal binary mask L to end
the iterating process

L∗ = argmax
L

p(L|G, X) ∝ argmin
L

E. (8)

Once L∗ has been obtained, there is a direct way to define
saliency value S(xi) as the probability of xi to be labeled with
1 while the others are satisfied with L∗, i.e.,

S(xi) = p(li = 1|G, X)

= p(fi|GF,1).p(si|GS,1).p(RL∗ |GR).RL∗ .e−Σj∈Ni
Vi,j .

(9)

Finally, it should be noted that each GMM is simply es-
timated by a recursive expectation-maximization algorithm,
with each mixture made of three components, and the MAP
is approximately estimated by an iterated conditional mode
algorithm.

B. Differential Threshold-Based Visual Feature

Inspired by the discovery made by Ernest Heinrich Weber
[48] that the perceptual difference between two homogeneous
physical stimuli is not an absolute amount but a relative one
associated with the intensity of the preceding stimulus, this
paper proposes a differential threshold-based contrast model to
define the saliency feature for each pixel in the image.

For every color channel, it is compartmentalized by a se-
quence of intervals called JNDs. Each JND is determined by
a set of ethological and psychological experiments conducted
by the authors. First, 15 participants are chosen to be subjects
in the experiments. Then, the JNDs of each color channel are
determined by increasing the value in this channel based on

TABLE I
UPPER BOUNDS OF EACH COLOR INTERVAL DIVIDED

BY THE OBTAINED JNDS IN THE RGB COLOR SPACE

the preceding JNDs until a perceivable change happens to the
subjects. The increment with a chance of 50% of being reported
to be different from the proceeding color by the subjects is
considered as the new JND in the examined channel. In this
process, the other two color channels are fixed to the corre-
sponding average. This procedure is repeated for each color
channel until the color space is quantized to a limited number
of color prototypes.

After implementing this procedure in the RGB color space,
the R, G, and B channels are finally divided into 9, 10, and 9
JNDs with unequal intervals, respectively. For each interval, its
corresponding upper bound is presented in Table I. Then, the
color statistics of the rerepresented image are used to calculate
the visual feature for each pixel. To be specific, the feature value
of a pixel xi is determined by

f(xi) = f(Ii) =

n∑
j=1

pjD(Ii, Ij) (10)

where Ii is the color of pixel xi, n is the total number of colors
presented in the image, and pj is the frequency of color Ii in
the image. D(Ii, Ij) is the color distance between Ii and Ij .
Employing different color spaces or color distance formulas
often leads to completely different values for D(Ii, Ij). In
our experiments, best results were obtained by measuring the
distance with a new color distance formula in the CIELAB color
space. More details are specified in Sections III-C and III-D.

By using the differential threshold to quantize the color
space, we can reduce the number of colors to n = 810. Perhaps
the closest to our feature are the features of [49] and [20]. These
two features are based on the color statistics of images similar
to (10), which is designed with a computational complexity
of n2. Differently, the feature of [49] reduces n2 by utilizing
only gray-level information of images, i.e., n2 = 2562. This
feature has the obvious disadvantage that a lot of useful color
information is ignored. Cheng et al. [20] propose to quantize
each individual color channel of the RGB color space to 12
equidifferent values, which reduces n to 123 = 1728. However,
using rigid division to split color channels with equal intervals
does not have a theoretical basis, and thus, it is unclear how
effective they are. In contrast, employing a full color space and
a nonrigid division is consistently more appropriate with human
visual characteristics.

Although the color contrast can be computed efficiently by
a more compact representation of the color information con-
tained in images, this representation can also introduce some
artifacts that confound some similar colors with the excessive
different values. In order to overcome this negative effect, a
smoothing procedure is employed to refine the feature values.
This procedure is implemented by replacing the feature value
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Fig. 4. Statistical map illustrates the saliency distribution for 200 normalized
training images. Each pixel in the map indicates the possibility of being salient
for a normalized image with fixed size. The high intensity indicates the high
possibility of a location being salient.

of each color with the weighted feature values of similar colors
[measured by (19)]

f(Ii) =
∑

Ij∈Mi

w(i, j)f(Ij) (11)

where Mi denotes the m nearest colors of Ii. The weight
{w(i, j)}j depends on the difference between the color Ii and
Ij and satisfies the normalization constraints 0 ≤ w(i, j) ≤ 1
and

∑
j w(i, j) = 1. More specifically

w(i, j) =
1

Z(i)
e−D(Ii,Ij)

2/h2

(12)

where Z(i) =
∑

j e
−D(Ii,Ij)

2/h2
is the normalizing factor. The

parameter h controls the decay of the weights as a function of
the color differences. m and h are experimentally fixed to n/4
and 4, respectively, in all our experiments.

C. Center Bias

The center bias is also taken into account due to the fact that
humans naturally put their attentional spotlight near the center
of the image at the first glance, and photographers actually have
a bias to make objects of their interest close to the center of the
scene. This rule is true for the 200 training images as illustrated
in Fig. 4. For these reasons, the proposed method additionally
includes a feature which indicates the Euclidean distance to the
center of the image for each pixel.

III. EXPERIMENTS

A. Image Data Set

In order to evaluate the performances of DTMBVS under dif-
ferent settings, as well as to compare this method with state-of-
the-art saliency detection methods, two publicly available data
sets are employed. The first data set containing 1000 images is
manually constructed by Achanta et al. [18] and has achieved
great popularity in saliency detection [20]. Each of the selected
image in this data set contains one or several salient objects
and has an accurate object-contour-based ground truth. The

experiments randomly select 200 images and their associated
ground truths as the training set and use the remaining 800 as
the testing set. Then, the trained model is further tested on the
second data set, MSRA-B [34], [35], which contains 5000 well-
labeled images, much larger than the first one.

B. Evaluation Measure

In the experiments for quantitative evaluation, the criterion
called precision-recall curve is chosen to capture the tradeoff
between accuracy and sensitivity. This parametric curve is
sketched by varying the threshold used to binarize the saliency
map. Precision measures the rate of the positive detected salient
region to the whole detected region, while recall measures the
rate of the positive detected salient region to the ground truth.
Moreover, F-measure [50], which is a weighted harmonic mean
of precision and recall, is also taken to provide a single index.
More specifically, given the image with pixels X = {xi} and
binary ground truth G = {gi}, for any detected binary saliency
mask L = {li}, these three indexes are defined as

precision =
∑
i

gili/
∑
i

li (13)

recall =
∑
i

gili/
∑
i

gi (14)

Fα =
precision× recall

(1− α)× precision+ α× recall
(15)

where α is set to 0.5 according to Martin et al. [50].

C. Color Space Selection

A color space is a model where the independent components
of color are precisely defined, by which one can quantify,
generate, and visualize colors. Different color spaces are suit-
able for different applications. Therefore, it is necessary to
experimentally determine the most appropriate color space for
a particular task. In this section, six mostly employed color
spaces, CMYK, HSV, RGB, XYZ, YCbCr, and CIELAB, are
evaluated on the data set constructed by Achanta et al. to select
the most suitable one for the proposed method.

The final results are shown in Fig. 5(a). For each color
space, the corresponding best distance metric is employed (the
discussion of distance metric is presented later in Section III-
D). It is manifest that adopting CMYK, HSV, and CIELAB
color spaces always obtains better results than using the others,
and the CIELAB color space achieves better performance than
CMYK and HSV most of the time according to the precision-
recall curves. Moreover, the F-measure bars also show that the
proposed method based on theCIELAB color space outperforms
the other five in this perspective. According to these analyses, it
is reasonable to believe that the CIELAB color space is more
suitable for the proposed method. Therefore, the following
experiments are all conducted on this color space.
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Fig. 5. Precision-recall curves and averaged precision, recall, and F-measure bars of saliency detection results by the proposed method using different settings.
(a) Different color spaces. (b) Different color difference measurements in CIELAB color space. “L∗a∗b∗ − L2,” “L∗a∗b∗ − Corr,” “L∗a∗b∗ − L1,” “L∗a∗b∗ −
CIEDE,” and “L∗a∗b∗ − ad.L2” are corresponding to (17), (18), (16), CIEDE2000, and (19), respectively. (c) Different color representations. “DTMBVS-HC,”
“DTMBVS-FT,” and “DTMBVS-DT” are corresponding to the DTMBVS based on the color representation employed in [18] and [20] and the differential
threshold-based color representation, respectively. All the experiments are based on the data set constructed by Achanta et al.

D. Color Difference Measurement

Measuring the difference or distance between two colors is
an important aspect for color analysis. There are three com-
monly used formulas in practical applications [51], [52]. In gen-
eral applications, the color difference of two points, I1 and I2,
in a full color space is often directly derived from (16) or (17)

D(I1, I2) = ‖I1 − I2‖1 (16)
D(I1, I2) = ‖I1 − I2‖2. (17)

The third commonly used formula is based on the concept of
correlation coefficient

D(I1, I2) = 1− r(I1, I2) (18)

where r(I1, I2) is the correlation coefficient between I1 and I2.
Aside from these three universal formulas, there are also

others designed for specific color spaces. In these formulas, the
CIEDE2000 color difference formula has been considered as
the best choice for the CIELAB color metric [53].

It is notable that the aforementioned formulas give the same
weight to each color channel. However, human observers are
not with the equivalent sensibility to the hue, saturation, and
lightness changes [54]. Hence, here, the authors propose other
color difference formulas for the CIELAB (l∗, a∗, b∗) color
space to match the characteristics of human perception

D(I1, I2) =

√
φ (l∗1 − l∗2)

2 + (a∗1 − a∗2)
2 + (b∗1 − b∗2)

2 (19)

φ =

{
1, if σL∗ ≥ max(σa∗ , σb∗)
0, otherwise.

(20)

where σL∗ , σa∗ , and σb∗ are the variances of the corresponding
color channels.

The biggest difference between the proposed formula and
the previously discussed four equations is that the proposed
formula is based on a heuristic perceptual fact that lightness
has less effect than the color opponent in the visual atten-
tion process, unless the lightness variation is large enough.
This principle is also improved in our experiments. Fig. 5(b)
demonstrates the comparative results. It is manifest that the
best performance is achieved by employing the proposed
formula.

E. Effects of Differential Threshold Representation

The proposed DTMBVS contains a differential threshold-
based color representation, which aims to imitate the human vi-
sual system better while having high computational efficiency.
In this section, two relevant color quantization methods [18],
[20] are employed to substitute the differential threshold-based
color representation. Then, their results are evaluated to verify
the relative advantage of differential threshold.

Fig. 5(c) plots the results of the DTMBVS method based
on different color quantizations. All these curves and bars
altogether can prove that the differential threshold-based color
representation has a clear advantage compared with other ex-
isting methods. Therefore, it is reasonable to believe that the
proposed color representation is more suitable for the proposed
method.
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Fig. 6. Precision-recall curves of the proposed DTMBVS and state-of-the-art saliency detection methods on (a) data set constructed by Achanta et al. and
(b) MSRA-B data set.

F. Comparison With Other Methods

The results of the proposed method are compared with 14
state-of-the-art saliency detection methods. They are respec-
tively AC [26], AIM [38], AWS [24], [25], CA [33], FT [18],
GB [37], HC [20], IM [41], IT [19], LC [49], SEG [32], SeR
[30], SR [31], and SUN [39]. These 14 methods are selected
according to four certain principles following [18] and [20]:
recency (CA, HC, IM, and AWS are proposed during the last
two years), high citation frequency (AIM, GB, IT, and SR have
been cited over 200 times), variety (LC and HC are global
contrast based; AC, FT, SeR, and SUN are local contrast based;
IT and AWS are biologically inspired; and SEG and SR are
fully computational), and relation to the proposed DTMBVS
(HC and LC). The code for LC is from Cheng et al. [20]. For the
other 13 selected methods, their codes are downloaded from the
authors’ home pages. Every method is used to compute saliency
maps for all the testing images. Then, the obtained results
are compared with the labeled ground truth for quantitative
evaluation.

Fig. 6(a) illustrates the results on the data set constructed
by Achanta et al. The precision-recall curves show that the
proposed method clearly outperforms AC, AIM, AWS, CA,
FT, GB, IM, IT, LC, SEG, SeR, SR, and SUN. The proposed
method can locate salient regions with much more accuracy
than these 13 existing methods, i.e., yield higher precision
with the same recall rate over the 800-image testing set and
vice versa. The proposed method outperforms HC most of the
time, except the disadvantage of lower precision rates when the
tasks place more emphasis on achieving extremely high recall
rates. However, in practical applications, simply emphasizing

Fig. 7. Averaged precision, recall, and F-measure bars of the proposed
DTMBVS and state-of-the-art saliency detection methods on MSRA-B
data set.

the extremely high recall rate is not a satisfying choice. A
balance between the precision and the recall rate must be more
appropriate [50]. According to this principle, the moderate
precision and recall rates should be referred to. In this case,
the proposed method is the best choice in most applications.

In order to further validate the effectiveness and robustness
of the proposed DTMBVS, the MSRA-B image set is also
employed in this comparative experiment. The precision-recall
results are presented in Fig. 6(b). It is obvious that DTMBVS
outperforms AC, AIM, FT, HC, IM, IT, LC, SEG, SeR, SR, and
SUN on this image set. However, as can be seen in Fig. 6(b),
the precision-recall curves cannot provide discriminative clues
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Fig. 8. Saliency detection results. From left to right, each column respectively represents the original images, the ground-truth labels, the saliency maps calculated
by AIM [38], AWS [24], [25], CA [33], GB [37], HC [20], IM [41], LC [49], SEG [32], SeR [30], and SUN [39], and the saliency maps calculated by the proposed
method.

for AWS, CA, and GB. Therefore, the F-measure bars should
be taken to provide more discriminative information. The com-
parative results are presented in Fig. 7, which shows that the
proposed DTMBVS clearly dominates other competitors in the
F-measure indicator.

Several visual comparisons are also presented in Fig. 8 for
qualitative evaluation. Only the top ten of the 14 aforemen-
tioned methods, AIM, AWS, CA, GB, HC, IM, LC, SEG, SeR,
and SUN, are selected according to the F-measure indicator to
compare with the proposed one. As can be seen from Fig. 8,
the competitive ten methods tend to produce internally incon-
gruous or morphological changed salient regions, while the
proposed DTMBVS is prone to generate much more consistent
results.

The salient region detected by the proposed method is vis-
ibly distinguished with the background. From this result, it
can be inferred that the selected features (i.e., the differential
threshold-based visual feature and the spatial constraint) can
be more distinguishable than others and the model constructed
with the MRF is more appropriate. Therefore, the proposed
method has the ability to locate the truly salient regions in a
greater probability for each image.

G. Robustness to Noise

Generally, in consideration of the actual conditions, a well-
defined model is the one that not only achieves satisfying results
for the testing data but also can resist a significant level of noise.
In order to evaluate the robustness of all these saliency detection
methods, a significant level of white Gaussian noise, which
keeps the SNR = 20 dB, is added to each testing image. The
second column of Fig. 9 shows an example image with added
noise. This image is disturbed by numerous white spots. How-
ever, the object-background content can still be distinguished
easily by human eyes.

Fig. 9. First row presents an original image and the corresponding noisy
image. The second row presents the saliency maps calculated by the proposed
method.

Fig. 10. Performance comparison after adding noise to images. The bars are
used to indicate the amounts of changes in the average values of precision,
recall, and F-measure. The SNR after adding noise is kept constant at 20 dB.
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Fig. 11. Image retargeting. From left to right, each column respectively represents the original images, ground-truth saliency labels, saliency maps calculated by
HC [20], carved seams by HC, resized image by HC, saliency maps calculated by the proposed DTMBVS, carved seams by DTMBVS, and the resized image by
DTMBVS.

Then, the amounts of changes in the average values of
precision, recall, and F-measure are compared to show the
influence of the white Gaussian noise on different methods.
Fig. 10 demonstrates the results on the data set constructed by
Achanta et al. All these bars altogether show that the proposed
DTMBVS performs a remarkable robustness to white Gaussian
noise compared with other existing methods.

The reasons for the robustness of the proposed method are
mainly the following: 1) The smoothing procedure in feature
representation is effective at reducing the negative effects of
the added white Gaussian noise, and 2) the employed model,
which can strengthen the spatial constraint by MRF, is suitable
for resisting this kind of interference.

IV. CONTENT-AWARE IMAGE RETARGETING APPLICATION

In some degree, practicability is an important evaluation
aspect for a method. From this view, an excellent saliency
detection method should enable many practical applications,
which will achieve better results if human visual attention
characteristics have been taken into account. Among these
applications, a typical one named content-aware image retar-
geting is selected for further evaluation, which aims at flexibly
resizing images by removing/expanding the noninformative
regions.

Seam carving is a popular technique for image retargeting
[55]. A seam is defined as a connected path of pixels going from
the top (left) of an image to the bottom (right). By repeatedly
removing or inserting seams, the image can be retargeted to
the expected size. To obtain satisfying results, the removed or
inserted seams should ensure that the salient regions in the
image should not be disturbed.

Generally, seam carving is implemented by finding the path
with the minimum cumulative energy and removing it from the
image [55]. In this paper, the detected saliency maps are used
for energy function definition. Through retargeting images to
the 75% width of the original ones and judging the results sub-
jectively, the practicability of the employed saliency detection

method can be evaluated directly. The HC [20], which has the
best performance among the competitive methods according to
the precision-recall curves in Fig. 6, is chosen to conduct the
comparative experiment.

Fig. 11 presents the intermediate process and final results. It
is manifest that the DTMBVS maps can help to produce more
eye-pleasing images than HC maps. The DTMBVS can gen-
erate saliency maps with higher and more consistent saliency
values in target regions than HC. In this case, the seams through
these regions are accurately avoided, and the resized results
therefore have less distortions.

V. CONCLUSION

Humans can efficiently fix their attentional spotlight to the
areas of interest even when no more cues other than color are
employed. This gives us a clue that simple image features and
saliency models might be competent for a good performance. In
this paper, a supervised method for saliency detection has been
presented. The proposed method mainly incorporates the single
biologically inspired saliency feature, differential threshold-
based color feature, to predict the possibilities of each pixel
being salient through MRF learning. Its performance has been
evaluated on two public image data sets. Experiments indicate
that the proposed method outperforms other 14 state-of-the-art
saliency detection methods in terms of both effectiveness and
robustness. An application of seam carving is also involved,
which intuitively exemplifies the usefulness of the proposed
method.

Although various saliency detection methods have been
proposed, the performance of these methods is still far from
satisfying compared with the human visual system, particularly
when tackling images of complex scenes. This is largely be-
cause many valuable cognitive principles of visual attention in
the human visual system have not yet been considered. It is
reasonable to believe that further introducing these principles
in saliency detection will be beneficial for improving the state
of the art.
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